Exogenous thymine DNA glycosylase regulates epigenetic modifications and meiotic cell cycle progression of mouse oocytes.

نویسندگان

  • Jun-Yu Ma
  • Kun Zhao
  • Ying-Chun OuYang
  • Zhen-Bo Wang
  • Yi-Bo Luo
  • Yi Hou
  • Heide Schatten
  • Wei Shen
  • Qing-Yuan Sun
چکیده

In mammalian cells, 5-methylcytosine (5-meC) can be transformed into 5-hydroxymethylcytosine (5-hmC) by the methylcytosine dioxygenase TET proteins (TET1, TET2 and TET3). Thymine DNA glycosylase (TDG), a downstream enzyme of TET proteins, not only functions in base excision repair, but also acts as a key enzyme that participates in active DNA demethylation. Here we microinjected exogenous TDG-mCherry mRNAs into germinal vesicle (GV) stage mouse oocytes, and found that initially TDG-mCherry localized in the nucleus. Just before GV breakdown (GVBD), TDG-mCherry was released from the nucleus into the cytoplasm. In contrast with TDG, another active DNA demethylation-associated enzyme, activation-induced cytidine deaminase (AID) became localized in the cytoplasm of GV oocytes, but entered the nucleus of oocytes just before GVBD. However, both TDG and AID could enter the G0 stage nuclei of cumulus cells injected into the ooplasm. To analyze the effects of TDG on oocyte maturation, we over-expressed TDG-mCherry in GV oocytes, and found that the rates of both GVBD and polar body extrusion rate were significantly decreased. When the TDG over-expressed oocytes were blocked at the GV stage, the oocyte chromatin became decondensed, and the histone 3 trimethyl lysine 9 (H3K9me3) and H3K9me2 levels were decreased. We also found that TDG could reduce the 5-meC level of oocyte genomic DNA. All these results indicate that aberrant TDG expression causes epigenetic modifications and meiotic cell cycle arrest of mouse oocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse

Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 i...

متن کامل

I-18: The Role of Sex Chromosomes in Female Germ Cell Differentiation

Background When gonadal sex reversal occurs in mammalian species, the resultant XX males and XY females become infertile or subfertile, suggesting critical roles of sex chromosomes in germ cell differentiation. The objective of our study is to clarify the mechanism of infertility in the B6.YTIR (XY) sex-reversed female mouse, which can be attributed to a failure in the second meiotic division i...

متن کامل

LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice

Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown...

متن کامل

CenpH regulates meiotic G2/M transition by modulating the APC/CCdh1-cyclin B1 pathway in oocytes

Meiotic resumption (G2/M transition) and progression through meiosis I (MI) are two key stages for producing fertilization-competent eggs. Here, we report that CenpH, a component of the kinetochore inner plate, is responsible for G2/M transition in meiotic mouse oocytes. Depletion of CenpH by morpholino injection decreased cyclin B1 levels, resulting in attenuation of maturation-promoting facto...

متن کامل

The role of Rad51 in safeguarding mitochondrial activity during the meiotic cell cycle in mammalian oocytes

Rad51 is a conserved eukaryotic protein that mediates the homologous recombination repair of DNA double-strand breaks that occur during mitosis and meiosis. In addition, Rad51 promotes mitochondrial DNA synthesis when replication stress is increased. Rad51 also regulates cell cycle progression by preserving the G2/M transition in embryonic stem cells. In this study, we report a novel function o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2015